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Some Key Issues

Evidence of B field enhancement at non-relativistic, SNR
shocks is growing: how are high fields generated?

X-ray emission in SNRs is often best modeled using non-
linear feedback from energetic cosmic rays: can we prove

the existence of such non-linear hydrodynamic effects in
SNRs [and also |?

Acceleration models have difficulty in injecting electrons
into the acceleration process for non-relativistic shocks:
how is efficient injection driven?

How are electrons accelerated in ? What
is their distribution (non-thermal versus thermal; and at
the highest energies), and abundance relative to ions?




Inferences of SNR B Fields using CHANDRA

Spatially-resolved line and
continuum spectroscopy: by
CHANDRA X-tay Observatory
permits probes of B field!
amplification in SNRSs;

Ease studyz SINLO06 (

), a clean system), iie. eanly
Sedov-phase (deduced from
radio proper'motions), simple

environment (high latitude
source), with well-defined shell:

Spatiallmapping of thermall(ie:
line) and non-thermal
synchrotron emission details
magnetic field contrast across
quasi-perpendicular shock.

Southwest rim (not showmn)
similartorNENmage:

Thermal interior (ted) and non-
thermal shell (blue).

SN1006

:0.5-0.8 keV;

:0.8-1.2 keV;

: 1.2-2.0 keV.




Spatially-Resolved Spectroscopy
with CHANDRA
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Spatial Brightness Profiles in SN1006

Surface brightness
protiles are much broader
for thermal X-rays and
radio synclrotron thamn
tor non-thermal X=rays;

Narrowness of profiles
along scansi argiies for
shocks L to sky, i.e. no
projectionallsmearing;

Flux contrast ratio (<
157 o upstream to
dowmnstream 1.2-2.0'keV/

SlIgZests ,1.e.

(Cas A offers
similampictume: Vink &
[Caming 2008);
Non-thermal X=ray widith
implies connection
between cosmic rays and
Btield amplification.

Long et al. 2003
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Thin black line: 0.5-0.8 keV; Black line: 1.2-2.0 keV;
Grey line: 1.4 GHz radio.




Non-Linear Field Amplification by
Cosmic Ray Streaming

proposed that high energy cosmic rays (CRs)
in strong shocks could amplify B when streaming upstream;

Essentially an energy-budget argument: B tield and CRs take large
portions of total energy flux, diminishing shock heating;

Work done on Alfven turbulence scales as the CR pressure
gradient: ;

Field amplification should then scale as (dB/B)*~M, P/ pu?;
works for high M, strong shocks that generate large P;

Mini-bandwagon has developed, with work by Berezhko, Voelk,
Ellison, Bykov, Lemoine, Pelletier, and others;

Self-consistent, simulational model for turbulent field
amplification is needed.




Electron Temperatures in the Shock Layer
Hughes et al. 2000
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> Hughes et al. (2000; E0102.2) & Decourchelle et al. (2000; Kepler)
observed that NE ionization fits to X-ray spectra (O, Ne, Fe, Mg/lines)
yielded T below hydrodynamic (HD) expectations: SkT /2 < m_(3u./4)Z/2;

Ram pressure HD gquantities deduced from proper motions: usually radio,
sometimes X-ray (left panel: ROSAT/Chandra);

Concludedithat low pest-shoeck i, and highi linerbrightness could be
preduced by nen-linearacceleration medels.
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Non-Linear Shock Modification

Berezhko & Ellison

p >mc

subshock

~
-

X

Pressure supplied by energetic CRs
slows upstream flow and reduces
subshock compression ratio;

=> |ower heating ofi ions and
electrons, i.e. T drops below.
unmodified HD expectations;

NL effects not yet demonstrated
uneguivocally'in SNRs (e.g.
Reynoelds & Ellison 1992, radio data

compilation for Tiychor+ Kepler).

Logyo [p* * (p) / (m ¢ noo)]

Ellison & Cassam-Chenai (2005)
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SNR Round-Up

B field amplification impacts maximum energy of
cosmic rays (both SNR spectral issue and CR knee issue);

Maximum energy E,.y controls Py, and therefore also
B-field amplification;

Maximum CR energy controls non-linear modification of
shock, i.e. “sub-hydrodynamic” heating in shock layer;

Electron-proton energy exchange in shock layer impacts

inferences of heating & e injection efficiency,

= i.e. modifies electron line diagnostics and ability to
generate X-ray synchrotron-emitting particles;

Complex interplay must be distilled into isolated
units / problems, attacked using simulations;

Mass ratio m,/m, and Ey;,y/m,u* are key impediments
to simulational progress;

Laboratory experiments could help span disparate scales
within single systems.




Relativistic Shocks, Gamma-Ray Bursts
and Jets in Active Galaxies

Dissipation at relativistic shocks? Application
also microquasars, and pulsar winds;

Weibel instability in shocks of low
magnetization (Medvedeyv, Silva; Nishikawa);

Fermi-type mechanisms: can they work in
ultrarelativistic systems? - spectral index and
efficiency issues (Kirk, Ostrowski, Ellison,
Baring, etc.);

Here we address a bottom line: all have to
generate the observed photon spectra.



GRB Prompt Emission Continuum Fitting

Baring end Braby (2004) . . . . .
Normalized Electron Distributions

CGRO Composite Spectrum for GRB910503 L L L
GRB 810303
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m Synchrotron radiation (preferred paradigm) fits most burst spectra -
index below 100 keV is key (“line of death”) issue;
= But, underlying electron distribution is predominantly non-thermal,

i.e. unlike a variety of shock acceleration predictions (e.g. PIC codes,
hybrid codes, Monte Carlo simulations): see Baring & Braby (2004).




3D PIC Plasma Shock Simulations

Nishikawa et al. Medvedev
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Nishikawa et al. (ApJ 2006): e-p (left panels) and pair shocks have great
difficulty accelerating particles from thermal pool (green is Lorentz-boosted
relativistic Maxwellian), dominated by electromagnetic thermal dissipation;

Medvedev (priv. comm.): Weibel instability simulation with the upper
energy cutotf continuously growing in time, i.e. no steady-state;

In PIC simulations, non-thermal power-law is at best, not prominent.




Escape Hatches?

m At face value, GRB spectra indicate that
acceleration models need to generate dominant
non-thermal e- distributions;

m Can laboratory experiments cast light on this?

m But, possible resolutions include:

m other attractive radiation mechanisms:
1. small angle synchrotron (Epstein 1973),

2. jitter radiation (Medvedev 2000, 2006);
acting in concert with
upscattering may work (Panaitescu & Meszaros 2000;
Liang, Boettcher & Kocevski 2003; discussed in Baring &
Braby 2004) - it removes any connection to a thermal
population in the BATSE band.




High Energy Emission in EGRET Bursts

Baring {2008)
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Spectral Properties of Diffusive

i Relativistic Shock Acceleration

= For small angle scattering, ultra-relativistic, parallel
shocks have a power-law index of 2.23 (Kirk et al. 2000);

= Result obtained from solution of diffusion/convection
equation and also Monte Carlo simulations (Bednarz &
Ostrowski 1996; Baring 1999; Ellison & Double 2004);

= Power-law index is . scattering angles
larger than Lorentz cone flatten distribution;

= Large angle scattering yields kinematic spectral
structure;

= Spectral index is generally a strongly increasing function
of field obliquity angle Bg,,,.




Upstream

Baring & Summerlin (2006)



Relativistic Shocks: Spectral
Dependence on Scattering

m Deviations from
““canonical” index of
2.23 (Bednarz &
Ostrowski 1998; Kirk et
al. 2000; Baring 1999)
occur for scattering
angles >1/T , i.e.
Large angle scattering
yields kinematically
structured distributions; s

(e.g., Ellison, Jones & ) 600}
I8, =10

Logo[mec dN/dp]

Reynolds 1990; Ellison < 20°
& Double 2004; Baring < 6°
2005)




Oblique Shock Geometry

z
B2
upstream flow downstream flow
velocity ug velocity u,
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Relativistic Shocks: Spectral Dependence
on Field Obliquity and Diffusion

Ellison &
Double
(2004)
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Implications for Gamma-Ray Bursts

Relativistic shocks can generate a multitude of
spectral forms: power-law indices depend on
shock parameters and scattering properties;

=
m Distinct contrast to non-relativistic case
|depends on 7 only];

Spectrum is only flat for quasi-parallel shocks or
strong turbulence;

GRB prompt and afterglow emission more easily
explained by mildly-relativistic shocks that are not
quasi-perpendicular (for diffusive acceleration
scenarios).




Outstanding Issues/Questions

Evidence of magnetic field enhancement at non-
relativistic, SNR shocks is growing: how are high fields
generated?

X-ray emission in SNRs can sometimes be best modeled
using non-linear feedback from energetic cosmic rays in
remnants: can we prove the existence of such non-linear
hydrodynamic effects in SNRs? Are the relevant for
relativistic shocks in GRBs and blazars?

Acceleration models have difficulty in injecting electrons
Into the acceleration process in non-relativistic, electron-
jon shocks: how is efficient injection driven?

How are electrons accelerated in relativistic shocks?
What is their distribution (non-thermal versus thermal),
and what is their abundance relative to ions?




