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E-beam stoppage was considered to betrivial in theoriginal
papers > collisional stopping of 1-2 MeV beams. What if the
energy is much higher?



*’Fs Why collective instabilities?

*High ignitor pulse energy (100 kJ?) = high current

U =/mc’l7/e=100kJ

If Tismeasured in picoseconds. | =2 x 101 A/(y 1)

*Currents exceeding the limiting Alfven current

| , =ymc3/e=17 vy kA undergo catastrophic filamentation known
as Welbdl instability = possible collective mechanism of
extracting energy from the beam into B-fields and fast ions

sIncreasing y reduces| = enough electronsin the coronato
Ignite the tar get



New featuresof y>>1and ny/n; <<1
(relativistic beam in the core) regime




Relevance to Astrophysics

Magnetic Field Generation
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Note: astrophysicists and fast ignitors want the same: rapid
equipartition of relativistic beam and plasma energies!



*’FS Basic Physics Questions




*IFS Existing Computational Approaches




*IFS Importanceof Tearing I nstability and
Out-of-Plane B-field
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*IFS New modeling for n, << n, (weak hot
component), y>> 1 (relativistic), collisionless

*Present version of the code is two-dimensional, but extendable
to 3-D

*Question to workshop participants. are there any astrophysical
situations to which such density asymmetry is relevant??



Hybrid ssimulation approach: fluid
ambient plasma and kinetic fast electrons

*Two dimensional simulation: (x,y) computational
domain. E-beam propagatesin z-direction

T enuous current-neutralized Filamentation, B-field
y beam: no B-field generation
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Coalescence via
magnetic
reconnection,
B-field
amplification
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Major Assumptions




Conservation

=== 4f generalized

vorticity:

[

—_VxVxQ=0| whee |Q=VxV,-eB/mc

For initially cold collisionless plasma Q = 0 for all times!

— —

‘In2D: |IB=€B,—€ XVy| wheey=A,

z

-After smplealgebrafromQ=0 2> V= Y/MC



Field Equation for y and B,

2 2 —1 -

@, + O <7. > Az -]

2 pe pe | . b
V- 2 W = -
C C

Neglect electron inertia: eVY . _ Ny - flux “frozen” into beam
2
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Note: out-of-plane magnetic field isonly generated if J./n,hasa non-
vanishing curl = electron inertiaisessential. Thiseffect isknown in MHD
literature as whistler-driven reconnection. Whistler-driven reconnection
requiresan extra Hall term in the MHD equations.



Extension to 3-D

B=8,B,(X,,42)—&xV w(X,,12)+V ¢(X,,12)

! ! !

small dominant smaller

*For A << 1 neglect B, and ¢ > dsice e-beam and solve for :

(V2 -k2 )y =4xe, - J,/c e o 1oy
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*IFS Particle and Field Equations

sEquation of motion for beam particles:

d(y;v;.) e, = € o 5. e D _ & ~YRVAY
SR v Vy?+F,| whee [B=€éB. -6 xV
dt m}/j W 2m202 l// 1 7 Z Z w

*Field Equation (solved using a multigrid algorithm):

2 . = ~ i ~ =
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Example:
filaments merger
for n,/n, = 1000




*’FS Weibel instability of a beam in a strongly
overdenseplasma(l <1,)
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*’FS First results: plasma heating and
magnetic field generation
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*IFS Energy deposition into plasma
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*IFS  Weibd instability of high current
beam




*’FS Weibel Instability isdimensionality-
dependent
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Benchmarking with the LSP PIC
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