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ABSTRACT

We derive analytic formulas for the radiation power output when electrons are accelerated by a relativistic
comoving kinetic Poynting flux, and validate these analytic results with particle-in-cell simulations. We also derive
analytically the critical frequency of the radiation spectrum. Potential astrophysical applications of these results are
discussed. A quantitative model of gamma-ray bursts based on the breakout of kinetic Poynting flux is presented.
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1. INTRODUCTION

In popular paradigms of radiation from blazars, pulsar wind
nebulae (PWN), and gamma-ray bursters (GRB), relativistic out-
flow energy (hydrodynamic or electromagnetic) from the central
compact object (black hole or neutron star) is first converted into
relativistic nonthermal kinetic energy of electrons via some dis-
sipation mechanisms (e.g., collisionless shocks, Dermer 2003;
Meszaros 2002; Lyubarsky 2005). These nonthermal electrons

Q1 are then hypothesized to radiate, in the comoving frame of the
outflow, synchrotron-like radiation (Rybicki & Lightman 1979;
Epstein & Petrosian 1973; Lloyd & Petrosian 2000), or “jit-
ter” radiation if the magnetic field is too chaotic (Weibel 1958;
Medvedev 2000; Medvedev et al. 2005). In addition, inverse
comptonization of the internal synchrotron (SSC) or external
soft photons (EC), plus hadronic processes, may produce the
high-energy gamma rays (Dermer et al. 2000, 2003). However,
the kinetic processes, which convert the outflow energy into
nonthermal electron energy and radiation (Hoshino et al. 1992;
Gallant et al. 1992; Silva et al. 2003; Nishikawa et al. 2003;
Spitkovsky 2008; Smolsky & Usov 2000; Lyutikov & Blackman
2002; Van Putten & Levinson 2003; Lyutikov & Blandford
2003), remain unsolved. In this paper, we present a quantita-

Q2

Q3
tive example of particle acceleration by a comoving Poynting
flux (CPF), in which both the radiation power output and critical
frequency can be derived analytically. We show that in this case
the intrinsic radiation efficiency is very low compared to clas-
sical synchrotron theory in a static field. As a result, electrons
can be accelerated to very high Lorentz factors before radiation
damping sets in.

In addition to the analytic theory, we have performed multi-
dimensional particle-in-cell (PIC) simulations (Langdon &
Lasinski 1976; Birdsall & Langdon 1991; Langdon 1992) to
model the nonthermal electron acceleration and radiation pro-
cesses (Liang et al. 2003; Liang & Nishimura 2004; Nishimura
et al. 2003; Liang & Noguchi 2005, 2006). In PIC simulations,
time is expressed in units of electron plasma frequency and
space is expressed in units of plasma skin depth. All physical
variables (e.g., electric and magnetic fields) are nondimension-
alized by the electron density which is left arbitrary since the
plasma is assumed to be Birdsall & Langdon 1991 collision-
less (see Birdsall & Langdon 1991). A unique feature of our
PIC simulations is that the intrinsic power radiated by each su-
perparticle (= numerical representation of a charged particle)
can be computed simultaneously as the superparticle is accel-

erated by the local Lorentz force (Noguchi et al. 2005; Liang
& Noguchi 2005, 2006). Such simulation provides a fully self-
consistent treatment of the intrinsic radiation power during the
acceleration process. We will calibrate and validate our ana-
lytic results using the PIC simulations. Section 2 reviews the
basic physics of comoving PF acceleration (CPFA, this term re-
places the acronyms DRPA and TPA used in our early papers).
In Section 3, we derive the analytic formula for the radiation
power output. Section 4 compares the analytic results with the
numerical radiation power from PIC simulations. In Section 5,
we derive analytically the critical frequency of CPFA radiation.
In Section 6, we discuss the astrophysical applications of the
above results. In Section 7, we apply the analytic formulas to
a simplified PF model of long GRBs. Section 8 is devoted to
discussions and summary.

2. COMOVING POYNTING FLUX ACCELERATION
(CPFA)

In this paper, we define “Poynting flux” (PF) narrowly as a
kinetic plasma outflow dominated and accelerated by transverse
electromagnetic (EM) fields with Ωe/ωpe = B/(4πnm)1/2 > 1,
without the presence of flow-aligned guiding magnetic fields
(Ωe = eB/m = electron gyrofrequency, ωpe = (4πne2/m)1/2

= electron plasma frequency, m = electron mass, n = electron
density; we set c = 1 throughout this paper except in Sections
6 and 7). Hence particle acceleration by classical Alfven and
whistler waves (Boyd & Sanderson 1969, see discussions in
Section 8) in a background magnetic field, or by longitudinal
plasma (Langmuir) waves (Tajima & Dawson 1979) will not
be considered in this paper. Instead we focus on semi-coherent
particle acceleration by the ponderomotive (J×B) force of a
comoving PF (Liang et al. 2003). Astrophysical examples of
such relativistic PF include the equatorial stripe wind of pulsars
and magnetars (Lyubarsky 2005, Skjaeraasen et al. 2005), and
the low-density limit of a magnetic tower jet driven by strongly
magnetized accretion disks around black holes (Koide et al.
2004). More examples will be discussed in Sections 6 and 7.

Comoving PF acceleration (CPFA) occurs when an intense
EM pulse, loaded with a small amount of plasma, maintains
a group velocity (<c due to plasma loading) roughly in phase
with the fastest electrons. As slower electrons gradually fall
behind the EM pulse, the plasma loading of the main EM pulse
decreases, the “group velocity” of the pulse accelerates, and the
Lorentz factor of the remaining comoving electrons increases,
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Figure 1. (a) Picture illustrating the CPFA concept. In all figures of this paper,
t is divided by 3/ωpe, and x is divided by 3c/ωpe. An intense plane EM
pulse escaping from an overdense plasma induces a polarization current, so
that the J×B force pulls out the surface electrons relativistically. But only
the fastest electrons can keep up with the EM pulse. So the plasma loading
of the EM pulse decreases with time. This leads to sustained acceleration of
only the fast electrons, with no limit to their Lorentz factor. The sharp plasma
boundary (hatched) is sketched only for illustration. Actual simulations using
smooth density profiles achieve similar asymptotic results. (b) CPFA can also
be visualized in terms of E × B drift in a comoving EM pulse. As |E| ==> |B|,
the particle path becomes quasi-rectilinear. α is the asymptotic angle between
the Poynting vector k and the drift velocity vd .

(A color version of this figure is available in the online journal.)

until dephasing or radiation damping sets in eventually. The
net effect is that the PF transfers its energy and momentum
to a decreasing number of faster electrons over time (Liang
& Nishimura 2004, LN04 hereafter). A physical realization
of CPFA was discovered by Liang et al. (2003) using PIC
simulations. When a slab of strongly magnetized (B/(4πnm)1/2

> 1) overdense (ωpe > 2π/λ, λ = characteristic wavelength of
the EM pulse) plasma expands into a vacuum or low-density
region, the initial expansion disrupts the sustaining current,
leading to 4πJ < Curl B. The excess displacement current
(∂E/∂t) then generates a transverse EM pulse, which tries to
escape from the embedding plasma. As the EM pulse tries
to escape, it “pulls” out the surface electrons via the J×B
force (Figure 1(a)), where J is the self-induced polarization
current (Boyd & Sanderson 1969). When the J×B force is very
strong, the accelerated electrons can stay comoving with the
group velocity of the EM pulse, and the acceleration becomes
semi-coherent and self-sustaining (Liang et al. 2003; Liang &
Nishimura 2004, LN04 hereafter; Liang 2005). CPFA can also
be understood in terms of relativistic E×B drift in an intense EM
pulse. As the drift velocity vd approaches c, the electron moves
almost along a straight line instead of cycloids (Figure 1(b)).
Provided that the plasma loading decreases with time due to the
loss of slow particles, the EM pulse will accelerate, approaching
a vacuum EM wave as |E/B| increases towards unity. This leads
to continuous acceleration of vd .

Figure 2. (a) Asymptotic electron energy distribution function f(γ ) in the main
pulse of two sample CPFA runs. Two plane slabs of magnetic-dominated pair
plasma with initial kTo = 0.125 m and Ωe/ωpe = 10 were allowed to freely
expand into a vacuum with different initial thicknesses: (cf. Liang et al. 2003)
(a) Lo = 104 c/ωpe and (b) Lo = 103 c/ωpe. Both pulses develop robust power-
law electron spectra of slope from ∼ −3 to −4 with low-energy turnovers at Γ.
Spectrum (a) was obtained after t = 10 Lo/c. Spectrum (b) was obtained after
t = 100 Lo/c, when the pulse “group velocity” Lorentz factor reached γ w ∼
Γ ∼ 15. It took several million time steps of PIC simulations to achieve such
well-defined power-law electron distributions.

(A color version of this figure is available in the online journal.)

Using PIC simulations, LN04 found that the maximum
Lorentz factor achievable by CPFA grows without limit as
∼(Ωet)1/2 until radiation damping or dephasing (e.g., due to
wave-front curvature) sets in. LN04 also found that the CPF
asymptotically accelerates the high-energy electrons into a
simple power law of slope from −3 to −4, independent of
the initial conditions or the pulse size (Figure 2). CPFA is
exceedingly robust and efficient, capable of converting >50% of
the EM energy into accelerated particle energy over a distance
∼ a few times the initial pulse width (see Section 7). In contrast
to shocks (Spitkovsky 2008; Silva et al. 2003), in which the bulk
flow energy is converted into turbulent EM energy and internal
particle heat, CPFA converts ordered EM energy directly into
accelerated particle energy via continuous rarefaction of the
plasma density. The detailed physics of CPFA has been reviewed
extensively elsewhere (Liang 2005; Liang & Noguchi 2005), so
they will not be repeated here.

3. RADIATION POWER EMITTED BY CPFA

In this section, we derive an analytic approximation for the
power radiated by an electron accelerated kinetically by a CPF.
The following derivation assumes linearly polarized plane EM
waves for simplicity, but the results should be valid in general
three-dimensional geometry as long as the wave-front curvature
and transverse gradients are �1/(acceleration distance). We
emphasize that the radiation formula derived in this section
should be applicable to any particle accelerated by transverse
EM fields comoving with the local ExB drift velocity vd . Hence
its potential astrophysical applications should be much broader
than the simplified CPFA scenarios discussed above.
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Since the radiation power output (energy/sec) is a Lorentz
invariant, one way to derive the power radiated is to start with
the classical synchrotron formula (Rybicki & Lightman 1979) in
a (primed) local Lorentz frame in which E′ = 0 and B′ is static,
and then use appropriate Lorentz transformations to express the
power in terms of lab-frame quantities. However, we find it to be
more transparent to work directly in the lab-frame. It turns out
to be also more convenient to discuss the different limiting cases
and approximations if we derive the radiation power using lab-
frame quantities. This is the approach we adopt in the following.

The relativistic dipole radiation power is given by (Rybicki
& Lightman 1979):

Prad = 2e2(F 2
|| + γ 2F 2

+ )/3m2 (1)

where γ = Lorentz factor, F‖ = force component along velocity
v, and F+ = force component orthogonal to v. For particle
motion in a linearly polarized plane EM wave with (E, B) =
(Ez, By) (Figure 1(b), note that Ez is negative), we have the
Lorentz force: Fx = −evzBy ; Fy = 0; Fz = e(Ez + vxBy). Here
x is the direction of the Poynting vector k. After a little algebra,
we find

F|| = eEzvz/v; F 2
+ = e2B2

y [sin2α(v2 − v2
w) + (vx − vw)2],

(2)
where vw = −Ez/By is the local “profile speed” of the EM
field (vw < 1 due to plasma loading) and sin α = vz/v = pz/p.

Q4 Substituting Equation (2) into Equation (1), we obtain

Panalytic = 2e4B2
y [sin2α(γ 2 − 1)(1 − v2

w) + γ 2(vx − vw)2]/3m2.
(3)

In addition to By and γ , the instantaneous power radiated by
an EM-wave-accelerated electron thus depends on two key
parameters: the local EM field profile speed vw and the angle α
(we emphasize that α is not the pitch angle, Rybicki & Lightman
1979). Equation (3) reduces to the classical synchrotron formula
Psyn = 2e4B2

yγp+/3m2 (p+ is the component of p orthogonal
to B, Rybicki & Lightman 1979) in the static limit vw = 0 and
simplifies in various other limits as follows.

1. Comoving particles (vx = vw). In this case, Equation (3)
simplifies to Panalytic = 2e4B2

y (p2
z + p2

y) sin2 α/3m2 when
γ � 1. Since in all CPFA runs, pz � py (py is conserved)
at late times (see below), this reduces to

Panalytic = 2e4B2
yp

2
z sin2 α/3m2 = 2e4B2

yp
2 sin4 α/3m2

× ∼ 2e4B2
yγ

2 sin4 α/3m2. (4)

However, Equation (4) is not a good approximation for
electrons significantly out of phase with vw (note that
electrons can have vx > vw or vx < vw). Using PIC
simulations, Liang & Nishimura (2004) showed that the
peak of the EM pulse moves with profile velocity vw close
to the peak γ of the particle distribution function f(γ ) of
the main EM pulse (cf. Figure 2).

2. Vacuum pulse limit (vw = 1). In the limit vw = 1, the PF
propagates as a vacuum EM wave. Equation (1) becomes,
for γ � 1:

Panalytic = 2e4B2
yγ

2(1 − vx)2/3m2 ∼ e4B2
yγ

2 sin4 α/6m2.

(5)
Equation (5) has the same functional form as Equation (4),
but its magnitude is a factor of 4 lower. It defines the lower
limit to the radiative power loss of a PF-accelerated electron,
since in practice vw < 1.

3. Slightly subluminal PF (1 − vw = ε � 1). For most as-
trophysics applications, the PF will be slightly subluminal.
We can simplify Equation (3) by Taylor expanding 1 − vw

= ε � 1 to the lowest order. This gives rise to

Panalytic ∼ 2e4B2
yγ

2(ε + sin2 α/2)2/3m2. (6)

For a relativistic CPFA, both ε and sinα are �1. Hence
Panalytic � Psyn. This is because CPFA acts like a quasi-
linear accelerator. Equation (6) shows that Panalytic behaves
differently depending on whether ε � or � sin2α/2. In the
former case, Panalytic depends solely on the EM field profile
speed vw and not on α:

Panalytic ∼ 2e4B2
yγ

2ε2/3m2. (7)

In the latter case, we regain the vacuum limit Equation (5)
which depends only on α and not on vw. We note that
the comoving limit Equation (4) is retrieved when ε =
sin2α/2. When we model astrophysical data using these
formulas, we obtain different (B, γ ) values depending on
the values of ε and sinα, which depends on the PF initial
conditions. Equations (4), (5), and (7), which contain only
three unknowns, (B, γ , α) or (B, γ , ε) are easier to use for
modeling astrophysical data than Equation (3) or (6), which
contains four unknowns. The three unknowns are analogous
to the conventional synchrotron model with three unknowns
B, γ and the pitch angle θ between B and p. However, unlike
the pitch angle θ , which can be arbitrary, we find that sinα
lies in a narrow range for the most radiative CPFA particles
(Figure 6). We emphasize that the cause of low radiation
power of small pitch angle synchrotron radiation (Epstein
& Petrosian 1973) is fundamentally different from CPFA
radiation: p//B as θ ==> 0, whereas p is orthogonal to B
as α ==> 0. CPFA has low radiative power because the
particle track is rectilinear due to relativistic, comoving B,
not due to p//B. Equation (6) is most useful in the ultra-
relativistic regime ε � sin2α/2, which seems to be the case
for GRBs (cf. Section 7) and may also be the case for blazars
and PWNs. In the following section, we will compare the
above analytic approximations with PIC simulation results,
which span a dynamic range of 105.

4. NUMERICAL RADIATION POWER OUTPUT

In this section, we present the intrinsic radiation output of
electrons (and positrons) accelerated by a kinetic CPF using
2.5D (two-dimensional space, 3 momenta) PIC simulations and
compare them to the analytic formulas of the last section. We
compute the radiation power output by incorporating the rela-
tivistic dipole formula Equation (1) into our PIC code. Numer-
ically, we compute the power radiated by each superparticle by
interpolating the EM field data from the cell boundaries to the
instantaneous superparticle position, so that F and v refer to
the same time and space point (Noguchi et al. 2005). This is a
nontrivial procedure since in PIC simulations, particle and field
data are offset by half time steps, and different field variables are
offset by half grid spaces (Birdsall & Langdon 1991; Langdon
& Lasinski 1976). We have carefully calibrated this numerical
procedure with known analytic results. Figure 3 compares the
PIC-simulated radiation output for an isotropic thermal plasma
(kT = 10 m) in a static uniform B field, with that computed
from the analytic synchrotron formula (Rybicki & Lightman
1979). Their good agreement for the high-power electrons vali-
dates our basic numerical algorithm. The scatter at low powers
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Figure 3. Calibration of the numerical radiation power Prad computed from PIC
simulation (Equation (1)) against the analytic synchrotron formula Psyn for a kT
= 5 MeV thermal plasma in a static uniform B field shows good agreement at
high powers in both (a) log–log and (b) linear–linear plots. The discrepancy and
scatter at lower powers are mainly due to numerical errors from interpolating
the field values from cell boundaries to the particle position. However, for an
ensemble of particles, the total power output is dominated by the high power
particles. Throughout this paper, all radiative powers (Prad, Psyn, and Panalytic)
are normalized by Po = 2e2Ωe

2/2700.

is due to the small but finite errors in the field interpolation
procedure. However, PIC simulation data cannot be used di-
rectly to compute the radiation spectrum numerically because
the PIC time step (typically = 0.25 gyroperiod) is too large to
accommodate high frequencies in Fourier transforms. Instead,
one has to smoothly interpolate the particle tracks to perform the
Fourier transform—an exercise beyond the scope of this paper
(see Hededal 2005).

Figure 4 highlights the time evolution of the spatial profiles
of field and particle momenta of a typical CPFA run. A linearly
polarized plane EM pulse accelerates a slab of overdense e+e−
plasma from left to right, similar to the case studied by Liang
& Nishimura (2004). While the energies of the pairs increase
monotonically due to the CPFA (Figure 4(a)), the power radiated
by the electrons rises to a maximum after ∼5 light transit
times of the initial pulse width, but then declines monotonically
(Figure 4(b)) due to the trade-off between increasing γ and

Figure 4. Snapshots at different times of the spatial profiles of a pair-loaded
EM pulse propagating from left to right show the CPFA evolution. The e+e−
plasma slab has initial temperature kTo = 0.005 m, pulse width Lo = 12 c/ωpe,
Ωe/ωpe = 10, and was initially located at xωpe/3c = 180. The five snapshots
(left to right) are taken at tωpe/3 = 0, 12, 20, 60, 100. We show the scatter plot
for 1% of all superparticles. (a) Time evolution of the magnetic field By and
electron Lorentz factors γ spatial distributions shows monotonic increase in γ

and conversion of magnetic energy into particle energy via current dissipation.
(b) Evolution of Prad spatial distribution shows that radiation loss for the highest
energy electrons peaks at ∼5 light crossing times, followed by monotonic decay
when the increase in γ is countered by the decrease in B and sinα. (c) Evolution
of the critical frequency ωcr spatial distribution shows a similar trend. ωcr is
expressed in units of ωpe = 0.1Ωe.

(A color version of this figure is available in the online journal.)

decreasing B and α. At late times (not shown) Prad approaches
a constant value. In Figure 5, we compare the numerical Prad
with Panalytic of Equation (4) for a different CPFA run (45◦
line). It shows good correlation for the highest power particles,
suggesting that these particles are comoving. At lower power,
the scatter plot forms two separate bands lying above and below
the 45◦ line, corresponding to non-comoving electrons with ε >
sin2α/2 and ε < sin2α/2 in Equation (6), respectively. Figure 6
shows the distribution of Prad versus sinα for three sample CPFA
runs of different initial temperatures. It shows that the highest
power particles have their sinα values concentrated between
0.01 and 0.2. This narrow range of sinα distribution seems to
hold up in all our CPFA runs so far. In contrast, in small pitch
angle synchrotron radiation (Epstein & Petrosian 1973), θ is
arbitrary and uncorrelated with γ .
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Figure 5. Scatter plot of Prad vs. Panalytic of Equation (4) (comoving limit) for
a pair plasma CPFA run with initial Ωe/ωpe = 10 and kTo = 10 m. We see that
the two powers converge only for the highest power particles. As expected at
lower power Prad deviates from Equation (4) by a large amount. The scatter is
concentrated in two bands above and below the 45◦ line. These deviations from
Equation (4) are due to electrons moving slower or faster than the EM pulse,
with ε > sin2α/2 and ε < sin2α/2, respectively, in Equation (6).

(A color version of this figure is available in the online journal.)

In the PIC simulations presented above, we have ignored
radiation reaction due to its very small magnitude (radiation
reaction force � Lorentz force as long as B � 1015 G = the
Dirac limit). However, our PIC simulations are also capable of
including the radiation reaction force term if necessary (Noguchi
et al. 2005).

5. CRITICAL FREQUENCY OF CPFA RADIATION

A prominent feature of GRB and blazar radiation spectra is
the presence of a low-energy spectral break Epk (hundreds of keV
for classical GRBs, radio-IR for blazars). This spectral break is
an indicator of the overall spectral hardness and is usually inter-
preted as the critical frequency of synchrotron radiation ωcrsyn
∼ 1.5ΩeΓp+ (Rybicki & Lightman 1979) emitted by electrons
at the low-energy cutoff Γ (Figure 2). This interpretation of the
spectral break, plus the assumption of energy equipartition, is
often used to constrain the Lorentz factor and magnetic field
of the source. However, as we show below, for radiation emit-
ted by CPFA electrons, the asymptotic critical frequency ωcr is
�ωcrsyn due to the quasi-rectilinear motion.

To derive the formula for ωcr, we follow the approach of
Landau & Lifshitz (1980): ωcr is determined by the time
measured in the detector frame it takes the radiation beam
of opening angle 1/γ to sweep past the detector due to the
curvature of the particle trajectory. For electrons comoving or
almost comoving with the PF, the parallel momentum px (x
is the direction along k, Figure 1(a)) increases monotonically,
while pz (momentum along E) asymptotes to a constant (Liang
& Nishimura 2004, note that py along B is conserved to first
order). Hence the change in the radiation beam direction due
to the slow bending of particle trajectory is dominated by the
change in px: Δθ ∼ pzΔpx/px

2. From the Lorentz force equation,
we have dγ /dt = eEzpz/mγ . Hence the time in the laboratory

Figure 6. Scatter plots of the distribution of Prad vs. sin α at late times for three
sample pair plasma CPFA runs with initial Ωe/ωpe = 10 and kTo = (a) 10 m; (b)
0.005 m; (c) 0.125 m. Horizontal dash lines denote Prad = 1% of the maximum
emitted power. Most high power electrons lie in the range 0.01 � sin α � 0.2
(vertical dotted lines).

(A color version of this figure is available in the online journal.)

frame for the radiation beam to change by an angle Δθ ∼ 2/γ
is Δt = 2γ 2m/(eEzp

2
z ), where we have used the approximation

γ ∼ px(�pz, py). This translates into a duration in the detector
frame Δtob = Δt/2γ 2 = m/eEzp

2
z . Thus, the critical frequency

(Rybicki & Lightman 1979)

ωcr = 1.5/Δtob = 1.5eEzp
2
z/m = 1.5Ωep

2
z ∼ 1.5Ωeγ

2 sin2 α

× ∼ ωcrsyn sin2 α. (8)

Since sinα � 1 at high power (Figure 6), ωcr � ωcrsyn. In
Section 7, we will discuss the implications of this result for
modeling GRB spectral data. In Figure 4(c), we show the time
evolution of ωcr for the same CPFA run as in Figures 4(a) and
(b). It shows that ωcr follows the same trend as Prad, reaching
a maximum after a few light transit times of the pulse width.
However the decline of Prad is more rapid than ωcr due to the
extra factors of sinα.

6. ASTROPHYSICAL APPLICATIONS

One of the most important applications of the above results to
astrophysics is the extraction of the (B, γ ) values of the emission
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region from observational data. Conventional synchrotron mod-
els determine (B, γ ) via additional ad hoc assumptions such as
energy equipartition, and injection rates of nonthermal electrons
(Dermer & Boettcher 2002). In contrast, the CPFA model tightly
constrains (B, γ ) from first principles because the electron ac-
celeration rate is determined by the PF magnetic field. Liang &
Nishimura (2004) derived, using the comoving Lorentz equa-
tion, the acceleration rate for CPFA electrons in the lab frame:

dγ /dt = f Ωe/γ, (9)

where f is a fudge parameter of O(1) that depends only weakly
on the initial PF magnetization Ωe/ωpe. This local acceleration
rate is independent of the global properties of the plasma or
details of the EM pulse profile. By equating Equation (9) to
the radiation loss rate of Section 3, we can now express the
asymptotic limiting Lorentz factor γ max of CPFA electrons due
to radiation damping:

γmax = (3f m2/(2Be3 sin4 a))1/3. (10)

For a given B field, Equation (10) predicts a Lorentz factor much
higher than limits from classical synchrotron radiation damping
since sinα � 1. Equation (10), together with Equation (8) for the
critical frequency, allows us to determine (B, γ ) uniquely from
the spectral break energy Epk (modulo the small uncertainty
in f and sinα), without invoking energy equipartition, particle
injection rate or other ad hoc assumptions. In this sense,
the CPFA model is more constraining and predictive than
conventional synchrotron models, which do not specify the
particle acceleration mechanism or the acceleration rate. In
Section 7, we will apply Equations (10) and (8) to a PF model
of GRBs. As a PF pulse evolves, B decreases (Figure 4) due to
conversion of EM energy into particle energy (cf. Figure 7).
Hence γ max increases with time. However, CPFA ceases to
operate after B drops too low so that Ωe < ωpe.

CPFA may be relevant to astrophysics in two different
settings: global and local. Globally, macroscopic EM pulses
with ordered fields and low plasma loading may be generated
by magnetic tower jets or transient magnetar winds (Koide et al.
2004) emerging from collapsars, or from the merger of strongly
magnetized neutron stars into a black hole or ms magnetar.
For example, CPFA can take place when a magnetic tower jet
punches through a collapsar envelope or wind, and converts
MHD waves into a kinetic EM pulse at sufficiently low ambient
density (see Section 7). Similarly, when a millisecond magnetar
collapses into a black hole, or when a strongly magnetized
neutron star binary merges to form a black hole, part of its
collapse energy may be emitted in the form of an intense EM
pulse.

Alternatively, CPFA may also occur at the local level in the ab-
sence of large-scale-ordered EM fields. For example, magnetic-
dominated (high-σ ) turbulence generated by relativistic shear
layers, shocks or reconnection, may dissipate locally via the
CPFA mechanism when nonlinear EM waves propagate into
low-density regions with Ωe > ωpe. In this case, CPF accel-
eration persists only until dephasing occurs due to wave-front
curvature and inhomogeneity. So the maximum Lorentz factor
achieved may be much lower than the radiation damping limit
given by Equation (10).

7. APPLICATION TO A PF MODEL OF LONG GRBS

Currently there is no universally accepted model of GRB
energization and radiation. Two popular paradigms are hydro-

Figure 7. Decay of EM energy for Ωe/ωpe = 10, kTo = 10 m CPFA pair plasma
runs with three different initial pulse widths: (1) Lo = 10800 c/ωpe; (2) Lo = 90
c/ωpe; (3) Lo = 12 c/ωpe. These results show that the time to convert 50% of
EM energy into particle energy is directly proportional to the light transit time
Lo/c. Total EM energy is normalized by Eo = 103 m.

(A color version of this figure is available in the online journal.)

dynamic or electromagnetic outflows from a central engine (e.g.,
a newly formed black hole accretion disk or millisecond mag-
netar), dissipating at a distance of 1014−15 cm (Meszaros 2002;
Piran 2000). Recent Fermi observation of the ultra-luminous

Q5GRB080916c which fits a simple “band function” spectrum ex-
tending from soft X-rays to >100 GeV (Abdo et al. 2009) may
favor a PF origin (Zhang 2009). If GRB is indeed energized
by an intense PF outflow, CPFA would be an attractive dissi-
pation mechanism due to its high-energy conversion efficiency
(Figure 7) and universal power-law spectra with low-energy
turnover (Figure 2). Here we apply the analytic formulas of the
previous sections to a simple quantitative model of long GRBs,
assuming that the PF contains only e+e− pairs with no ions
(e–ion models will be considered in future papers). Using the
CPFA model, we can predict the spectral break energy Epk from
first principles, which has not been achieved in conventional
synchrotron shock models.

Our underlying astrophysical picture is that some central
engine activity lasting tens of seconds launches an intense EM
pulse of length ∼1012 cm and energy ∼1051 ergs, loaded with
low-density e+e− plasma so that Ωe/ωpe � 1. This intense EM
pulse initially propagates through a collapsar envelope as a non-
relativistic MHD pulse, since the ambient density is high and
the formal Alfven speed vA = B/(4πρp)1/2 � c (ρp = ambient
gas mass density, in this section we write out c explicitly). But
the pulse eventually reaches a point where the ambient density
is so low that vA � c, and the MHD pulse “breaks out” into a
kinetic EM expansion similar to the scenario studied by Liang
& Nishimura (2004). This PF “breakout” triggers the CPFA and
rapid conversion of EM energy into particle energy. We have
performed PIC simulations of relativistic strongly magnetized
magnetosonic pulses propagating down steep density gradients.
The preliminary results seem to support the above “breakout”
picture. We emphasize that in this case the GRB “ejecta” are
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just a bundle of EM energy with current-carrying leptons (e+ or
e−) which act as radiation agents with little inertia.

For long GRBs, it is useful to scale the burst parameters with
the following benchmark values (Fishman & Meegan 1995;
Preece et al. 2000): total energy E51 = Etot/1051 erg, burst
duration T30 = T/30 s, prompt-γ emission distance R14 = R/
1014 cm. We approximate the EM pulse as a quasi-spherical
shell with thickness ΔR = cT = 1012 cm T30 (in this section
we write out c explicitly) and solid angle Ω4π = Ω/4π . To
simplify the model, we assume that the shell is uniform with
mean field B and mean lepton (e− + e+) density n. All physical
quantities are measured in the “lab frame”, which we assume to
be the rest frame of the GRB central engine. In reality, the field,
density, and particle momentum profiles are highly structured
due to current instabilities (Liang & Nishimura 2004), and
the following parameters primarily refer to those leptons with
Lorentz factor near Γ ∼ the peak of the momentum distribution
function ∼ 〈γ 〉 (Figure 2, Liang & Nishimura 2004 showed
that Γ ∼ the group velocity Lorentz factor of EM pulse = (1
− v2

w)−1/2). PIC simulations suggest that at late times, particle
energy Eparticle ∼ 0.6Etot, EM energy (= 2EB) ∼ 0.4Etot (Liang
et al. 2003). Let N = total number of leptons (e+ + e−) in the
pulse. In cgs units, we have dimensionally

NΓmc2 ∼ 6 × 1050 E51 (11)

B2ΔRR2Ω ∼ 16π × 1050 E51. (12)

Equation (12) gives

B ∼ 2 × 105 G
(
R−1

14 Ω−1/2
4π E

1/2
51 T

−1/2
30

)
. (13)

Next we estimate Γ by invoking Equation (10):

Γ ∼ 1.2 × 105(f 1/3 R
1/3
14 Ω1/6

4π E
−1/6
51 T

1/6
30 α

−4/3
.1

)
, (14)

where we have scaled sinα with 0.1: α.1 = sinα/0.1. Hence ε ∼
1/Γ � sinα and our assumption of ignoring ε in Equation (6)
is justified. Using this in Equation (11), we find

N ∼ 6 × 1051(f −1/3 R
−1/3
14 Ω−1/6

4π E
7/6
51 T

1/6
30 α

4/3
.1

)
. (15)

Combining Equations (8), (13), and (14), we obtain the value
of the spectral break energy, taken as the critical frequency
corresponding to peak Lorentz factor Γ (Figure 2):

Epk = hωcr/2π ∼ 490 keV

× (
f 2/3 R

−1/3
14 Ω−1/6

4π E
1/6
51 T

−1/6
30 α

−2/3
.1

)
. (16)

Interestingly, this value, which is derived from first principles
using the CPFA model, lies in the range of typical spectral break
energies of long GRBs in the host-Galaxy frame: Epk ∼ 250 keV
(1+z) ∼ 500 keV for z ∼ 1 (Preece et al. 2000). Equation (16)
depends only weakly on R, E, T, and Ω. For example, if the
jet opening angle ∼ few degrees, Ω ∼ 10−2, Epk can increase
by a factor of 3. If R ∼ 1015 cm, Epk is reduced by a factor
of 2. Since f and α can vary by a factor of ∼10, Epk can vary
by a factor of ∼5. All of these variations are consistent with
the observed spread of Epk (Preece et al. 2000). It would be
interesting to explore the implication of Equation (16) for the
Amati–Ghirlanda-type relations (Amati et al. 2002; Ghirlanda
et al. 2004) by studying the dependence of T, α, f etc. on the
total energy E. We emphasize that conventional synchrotron
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models of GRBs do not predict values of Epk from first principles
since the acceleration mechanism is not specified.

From Equation (15), we obtain the mean lepton density

n = N/(ΩΔRR2) ∼ 5 × 1010

× (
f −1/3 R

−7/3
14 Ω−1/6

4π E
7/6
51 T

−7/6
30 α

4/3
.1

)
(17)

and the magnetization

Ωe/ωpe ∼ 250
(
f 1/6 R

1/6
14 Ω−5/12

4π E
−1/12
51 T

1/12
30 α

−2/3
.1

) � 1,
(18)

which justifies our EM-domination assumption. At this density
the pairs are completely collisionless (Coulomb mean free path
> 1020 cm). We note that the local acceleration time of an
individual lepton, using the above values of B, Γ and sinα, is very
short: tacc = trad ∼ 10−2 s, which means that the leptons quickly
achieve their asymptotic Lorentz factor Γ after PF breakout.
However, the cooling/dissipation time of the overall EM pulse
is determined by the time to convert the global EM energy
into lepton energy, which is proportional to the light transit
time across the shell thickness ΔR/c (Figure 7). Moreover,
radiation emitted by the front and back of the plasma pulse
also arrives at the detector with a time delay of ΔR/c. These
two effects combine to make the GRB duration measured by
the detector ∼ ΔR/c = 30 s (Figure 7), irrespective of the short
acceleration time of individual leptons. We note that 1012 cm
corresponds to ∼1014 gyroradii, and the acceleration length
of ∼3 × 108 cm still equals 1010 gyroradii. Both scales are
much larger than the largest PIC simulations we have performed
(∼107 gyroradii). However, we emphasize that the only physics
invoked to derive the acceleration and radiation cooling rates
are all scale invariant. Figure 7 also demonstrates the scalability
of the overall energy conversion rate. Hence we are reasonably
confident that our kinetic results can be applied to macroscopic
astrophysical systems.

However, one puzzle remains: why and how does the EM
pulse decide to dissipate at R ∼ 1014 cm from the central
engine, two orders of magnitude larger than the EM pulse width
and six orders of magnitude larger than the lepton acceleration
length?We speculate that it may be the GRB environment,
which determines this dissipation distance. Here we venture
a speculative but plausible scenario that gives rise to such a
far away dissipation site from the central engine. In reality,
the PF “breakout” takes place not at a sharp star-vacuum
boundary but in an external density gradient whose scale height
is much larger than the pulse width or acceleration length.
Hence we speculate that Equations (9) and (10) are valid only
when the ambient ion mass density drops below the internal
pair mass density. Otherwise the EM expansion and particle
acceleration would be strongly inhibited by the ambient ion
inertia. In the collapsar model, the GRB progenitor is likely
surrounded by a Wolf–Rayet wind whose mass density ∼A.5 ×
1011 r−2 g cm−1 (Chevalier & Li 2000), where the parameter
A depends on the mass-loss rate. Hence the PF “breakout”
distance, using the pair density of Equation (17), becomes
rbreakout ∼ A1/21014 cm. In other words, the PF breakout and
lepton acceleration are inhibited by ion inertia of the progenitor
wind, until the PF reaches an ambient ion mass density of � 5 ×
10−17 g.cm−3, which only occurs at a distance �A1/21014 cm.
Figure 8 illustrates the relevant scales discussed in this scenario.

8. DISCUSSIONS AND SUMMARY

We have shown in this paper that when electrons/pairs are
accelerated by a comoving Poynting flux with Ωe/ωpe > 1, the
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 r rbreakout=1014cm 

5x10-17 g.cm-3

R=1012cm 

wind~r -2

ctacc=3x108cm 

TGRB
=30sec

photon paths 

Figure 8. Schematic diagram illustrating the different physical scales in the
“breakout” of a PF from a Wolf–Rayet wind model for long GRBs. The wavy
arrow denotes the (lab-frame) PF pulse width (ΔR = 1012 cm) along the observer
line of sight. The PF breakout distance (∼1014 cm) is determined by the radius
at which the ambient wind mass density drops below the PF internal pair mass
density (∼5 × 10−17 g cm−3). Despite the short acceleration length (∼3 ×
108 cm) of individual leptons as the pulse emerges, the detector-measured GRB
duration at infinity is determined by the overall transit time ∼ΔR/c = 30 s of the
pulse passing through rbreakout and the light paths between the front and back of
the PF pulse (upper-right spacetime diagram).

intrinsic radiation power and critical frequency can be estimated
analytically, and the values measured in the laboratory frame are
much below those expected from synchrotron in a static field.
This is because the EM field is almost comoving with the high-
energy particles and the particle paths are quasi-rectilinear. We
apply our formulas to a simple PF “breakout” model of classical
long GRBs, and find that the predicted spectral break energy
agrees with the range of observed Epk values.

Besides the CPFA mechanism, there are many other Poynting
flux scenarios that can lead to nonthermal particle acceleration.
For example, electron acceleration by longitudinal wake fields
generated by PF in an underdense plasma (similar to laser
accelerators in the laboratory, Tajima & Dawson 1979) may
occur in special astrophysical situations. We have also not
considered Poynting flux dominated by Alfven and whistler
waves. In general, waves of all types can transfer energy to
electrons via resonant scatterings (Boyd & Sanderson 1969).
But resonant interactions tend to only act on a small fraction of
the electrons at any time, whereas the ponderomotive force of
CPFA accelerate the bulk of the plasma in a sustained manner,
and transfer most of the EM energy to particles. PF acceleration
of e–ion plasmas is more complex than e+e− plasmas due to
charge separation (Nishimura et al. 2003). Their radiation output
will be studied in a separate paper.

This work was partially supported by NSF AST0406882 and
NASA NNG06GH06G.
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